
Copyright © 2002 Terratron Technologies Inc.

SPS2

A Development Library for
Linux (for PlayStation 2)

Steven “Sauce” Osman
Terratron® Technologies Inc.

SPS2 Version 0.2.0

Copyright © 2002 Terratron Technologies Inc. 2

Table of Contents

Table of Contents .. 2
Introduction .. 3
License Agreement.. 4
Acknowledgements ... 5
Programming with SPS2 ... 6
SPS2 Files and Directories.. 7
Installing and Loading SPS2 ... 8

Building the Kernel Module ... 8
Loading the Kernel Module ... 8
Unloading the Kernel Module.. 8
Removing SPS2 From Your System... 8
Building and Running the Sample Applications .. 9

A Sample SPS2 Program .. 10
SPS2 Programmer’s Guide ... 12

Performing a DMA Transfer .. 12
Accessing the Emotion Engine Registers ... 13
Accessing the Graphics Synthesizer Registers .. 16
Accessing the Scratch Pad Memory ... 18
Accessing the Vertex Unit Memories .. 19

SPS2 Core Function Set Reference.. 20
sps2Init .. 21
sps2Release.. 22
sps2Allocate .. 23
sps2Free ... 24
sps2Remap ... 25
sps2GetPhysicalAddress .. 26
sps2FlushCache.. 27
sps2WaitForDMA .. 28

SPS2 Extended Function Set Reference .. 29
_sps2Open .. 31
_sps2Close.. 32
_sps2MapEERegisters.. 33
_sps2MapGSRegisters ... 34
_sps2MapVUMemory.. 35
_sps2MapScratchPad ... 36

Index .. 37

Copyright © 2002 Terratron Technologies Inc. 3

Introduction

SPS2 combines a library of inline functions with a Linux kernel module to facilitate the
development of high-performance applications on PlayStation 2 systems running Linux (for
PlayStation 2). The goal of SPS2 is to reduce the difference between developing within the Linux
environment and directly to the PlayStation 2 while allowing the developer to leverage the Linux
services and tools. A future version of SPS2 will allow developers to compile applications to run
either directly within the Runtime Environment or within the Linux environment with no
modifications to the source code.

SPS2 enables high-performance applications by allowing applications full access to the

PlayStation 2 DMA controller. It enables developers to allocate non-swappable memory
segments, allows the developers to obtain the physical addresses of the memory segments, and
enables access to the DMA controller registers in order to configure and initiate the DMA
transfers. In addition, SPS2 gives developers access to all of the memory-mapped Emotion
Engine and Graphics Synthesizer registers as well as the Vertex Unit memories and the Scratch
Pad memory. Finally, SPS2 enables developers to access memory allocated through SPS2 in
both a cached and uncached manner.

Current Linux (for PlayStation 2) development utilities are either too restrictive; requiring

that the kernel be modified and recompiled so that a predefined portion of memory be
permanently put aside for use in DMA transfer, or don’t provide satisfactory performance; by
requiring the use of system calls to change register values or to initiate DMA transfers that could
perform a number of memory allocations and data shuffles before invoking the transfer. SPS2
seeks to address both of these issues by allowing programmers to allocate DMA friendly memory
during runtime and access the appropriate registers directly.

However, SPS2 is not without its faults. First, by exposing the DMA controller to non-

privileged users, improper use of SPS can compromise the stability and security of a system.
Whereas future versions of SPS2 will provide some tools to minimize the likelihood of crashing
the system during debugging, allowing users full access to the DMA controller will remain a
security concern; this is, unfortunately, a price that must be paid in favor of performance. Users
are cautioned not to allow access to their PlayStation 2 to people they do not trust. Another
problem specific to SPS2 is that whereas large amounts of memory can be allocated, SPS2
cannot guarantee that the entire memory region is physically consecutive. SPS2 can only
guarantee that individual pages – that is, 4096 bytes chunks – are physically consecutive. This
problem can be easily worked around by creating a reference DMA chain for data that extends
beyond 4096 bytes, pointing to the sequence of 4096 byte chunks of the data.

SPS2 delivers on its promise of providing high performance for Linux-based PlayStation

2 applications. For example, one of the provided sample applications, vspeed, is capable of
generating 460,000 textured, shaded polygons per frame, yielding about 34.2 million vertices per
second.

For the remainder of this document, Linux (for PlayStation 2) and PlayStation 2 will be

referred to as PS2 Linux and PS2, respectively.

SPS2 Version 0.2.0

Copyright © 2002 Terratron Technologies Inc. 4

License Agreement

SPS2 IS DISTRIBUTED "AS IS". NO WARRANTY OF ANY KIND IS EXPRESSED OR
IMPLIED. YOU USE AT YOUR OWN RISK. TERRATRON TECHNOLOGIES INC. WILL NOT
BE LIABLE FOR DATA LOSS, DAMAGES, LOSS OF PROFITS, OR ANY OTHER KIND OF
LOSS WHILE USING OR MISUSING THIS SOFTWARE OR ANY DERIVATIVE WORKS
THEREOF.

In terms of your right to distribute applications that use the SPS2 libraries or kernel module, you
may:

1. Include the library files (sps2*.h) with your application in source or binary form, provided
that you do not modify them

2. Include any or all of the sample and framework code, modified or unmodified, in source
or binary form with your application

You may not:

1. Distribute a modified version of the library (sps2*.h) files, either with your application or
separately.

2. Distribute a source or binary version of the SPS2 kernel module, whether modified or
unmodified

3. Distribute any derivative work of the SPS2 kernel module

This license is not intended to be overly restrictive; rather, it is designed to ensure
maximum compatibility across different kernel versions and across different SPS2 versions. If
you would like to suggest any changes to the module or the libraries, please contact the authors
who will, at their sole discretion, choose to incorporate the changes in future releases.

Most importantly, this license is designed for the benefit of the community at large; it

discourages multiple “SPS2-like” modules from being released, causing severe fragmentation in
the Linux (for PlayStation2) community while giving developers motivation for getting their
updates included in the official SPS2 distribution.

“Linux” is a trademark or registered trademark of Linus Torvalds
PlayStation is a registered trademark of Sony Computer Entertainment Inc.
Terratron is a registered trademark of Terratron Technologies Inc.

SPS2 Version 0.2.0

Copyright © 2002 Terratron Technologies Inc. 5

Acknowledgements

 This package would have never been completed had it not been for the support and
encouragement of two brilliant people, Lionel Lemarié and Morten Mikkelsen (aka Hikey and
Sparky). Hikey and Sparky patiently answered many of my (often stupid) questions and provided
a lot of input into what functionality this library should provide. They also put together the sample
applications that are provided in this package and tested the software for both stability and
functionality.

 Not only have I gained a lot of knowledge about the workings of the PS2 from Hikey and
Sparky, but also, and more importantly, I have gained two good friends.

Steven Osman

SPS2 Version 0.2.0

Copyright © 2002 Terratron Technologies Inc. 6

Programming with SPS2

 SPS2 is a kernel module which is accessed through a special device file, typically
/dev/sps2. SPS2 provides two API’s: the first, a set of ioctl() commands; and the second, a
number of inline functions. Use of the ioctl commands is heavily discouraged simply because
the inline functions are more convenient and safer to use. In terms of performance, the inline
functions provide only minimal error checking before invoking the ioctl commands, so they do
not impact performance noticeably. Another reason that use of the ioctl commands is
discouraged is that future versions of SPS2 may no longer support that function set. For
example, if a version of SPS2 were developed that allowed applications to run directly within the
Runtime Environment without the Linux kernel loaded, there might be no support for invoking file
operations such as ioctl().

This library of inline functions is further divided into two groups. The first group provides
a full set of functionality with a good set of defaults. Most developers should use this set of
functions. All functions in this group begin with the letters sps2. The second set of functions
provides a slightly more granular level of control at the cost of a few minor inconveniences to the
developer. These functions, which have names beginning with _sps2, will be of interest to
developers of middleware and other libraries that leverage off of SPS2. These two sets of
functions will be referred to as the SPS2 Core Function Set and the SPS2 Extended Function
Set, respectively, and the ioctl commands will be referred to as the SPS2 ioctl Command Set.

 Developers should be forewarned: SPS2 enables the developer to do much more than
Linux would ordinarily allow. This includes crashing the system. Developers are encouraged to
take a number of precautions to minimize data corruption and loss:

• Back up all files regularly
• Carefully read through code that builds DMA commands before executing it
• Sync the file system before executing an untested application (use man sync for more

information)
• If possible, mount some or all of the file system as read-only before executing an

untested application (use man mount)

Whereas syncing the file system will greatly reduce the chance of data corruption should the
PS2 crash, mounting partitions as read-only (in addition to the sync) will greatly reduce the boot
time of Linux by not requiring a file system check (fsck) of the read-only partitions. Future
versions of SPS2 will include tools to help predict the likelihood of a DMA transfer causing the
PS2 to crash, allowing the developer to circumvent the transfer. Ideas for additional debugging
tools are welcomed and encouraged.

SPS2 Version 0.2.0

Copyright © 2002 Terratron Technologies Inc. 7

SPS2 Files and Directories

 Included in the SPS2 archive are a number of files and directories. The following table
outlines the roles that these items play:

Name Type Role
sps2interface.h File Declares the SPS2 ioctl Command Set and the format of

their parameters and return values
sps2lib.h File Defines the SPS2 Core Function Set and the SPS2

Extended Function Set functions. All functions are inline;
there is no linking required.

sps2registers.h File Defines macros for the Emotion Engine registers and the
Graphics Synthesizer registers. Also includes structures for
some of the Emotion Engine registers.

sps2scratchpad.h File Defines macros to access the scratch pad memory
sps2vumemory.h File Defines macros to access the vertex unit memories
Tests Directory Contains a small set of test applications. These are more

useful for developing the kernel module than as sample
applications.

samples Directory Contains a number of sample applications that use SPS2.
Also provide a framework by which other applications can be
developed

The following table describes the directories within the samples directory:

Name Type Role
readme.txt File A description of the samples with comments about the

techniques they illustrate
Makefile File This Makefile builds all of the samples
bumpmap Directory This sample uses the GS blendmodes to perform per-pixel

bumpmapping
common Directory Contains a number of common files used by most of the

samples, including the framework
dyntexs Directory Illustrates how to synchronize the texture upload with the

geometry upload. Most closely approximates a “real” PS2
application

int_lock Directory Creates an interlock loop to perform a number of operations
in parallel

ps2lframework Directory Defines a framework by which other applications can be
developed

vspeed Directory Illustrates the speed capabilities of the PS2, even within the
Linux kernel by rendering 560,000 transformed, textured and
shaded polygons per frame

SPS2 Version 0.2.0

Copyright © 2002 Terratron Technologies Inc. 8

Installing and Loading SPS2

 The SPS2 Kernel Module is shipped separately. Programmers should download and
install the kernel module before using this library.

Building the Kernel Module
 In order for applications that use SPS2 to work, the sps2_mod kernel module must be
built and loaded. To achieve this, starting from the root directory of the SPS2 kernel module
distribution perform the following steps:

make depend
make

If you’re not running as root at this point:

su

and finally:

make install

This will build the kernel module for the current kernel version loaded, and install it in
/lib/modules/<version>/misc. It also installs two scripts, sps2_load and sps2_unload
in /usr/sbin. Finally, it configures the module to load automatically when the system is booted
up in runlevels 2, 3, 4, or 5, and unload when the system is switched to runlevels 0, 1 and 6.

Loading the Kernel Module
 To load the SPS2 kernel module, as root, invoke:

/usr/sbin/sps2_load

Unloading the Kernel Module
 To unload the SPS2 kernel module, as root, invoke:

/usr/sbin/sps2_unload

Removing SPS2 From Your System
 SPS2 can be permanently removed from your system by changing to the root directory of
the SPS2 kernel module distribution and, as root, performing the following step:

make uninstall

SPS2 Version 0.2.0

Copyright © 2002 Terratron Technologies Inc. 9

Building and Running the Sample Applications
 In order to build and run the samples, first follow the instructions in the section Building
and Loading the Kernel Module. Then, starting from the root directory of the SPS2 distribution:

cd samples
make depend
make

 To run the bumpmap sample, starting from the samples directory:

cd bumpmap
./spky_bumpmap

 You can use Control+C to exit the application.

 To run the dyntexs sample, starting from the samples directory:

cd dyntexs
./mskpath3app

 You can use Control+C to exit the application.

 To run the int_lock sample, starting from the samples directory:

cd int_lock
./myapp

 To run the ps2lframework sample, starting from the samples directory:

cd ps2lframework
./defapp

 You can use Control+C to exit the application.

 To run the vspeed sample, starting from the samples directory:

cd vspeed
./vspeed

 You can use Control+C to exit the application.

SPS2 Version 0.2.0

Copyright © 2002 Terratron Technologies Inc. 10

A Sample SPS2 Program

This file can be found as tests/hello.c. It illustrates many of the key concepts in the SPS2
library. The following code shows how to:

• Initialize the SPS2 library
• Allocate memory using the SPS2 library
• Execute a simple, normal-mode DMA transfer to the scratch pad memory
• Flush the cache to ensure that all data to be transferred is written to memory
• Access the DMA controller registers directly to initiate a DMA transfer
• Access the scratch pad memory directly to display some data that was just transferred
• Access the Graphics Synthesizer registers directly to change the background color
• Shut down the SPS2 library

#include <stdio.h>
#include <sps2lib.h>

// This is the string we will be outputting
#define OUTPUT_STRING "Hello SPS2 world!\n"

// This is the number of Q-Words (i.e. 16 byte increments) to copy
// We want to round up to the next Q-Word
#define OUTPUT_STRING_QWC ((strlen(OUTPUT_STRING)+15) >> 4)

int main(int iArgC, const char **ppcArgV) {
 int iSPS2Device; // Handle to the SPS2 device
 char *pcMemory; // DMA memory for transfer
 sps2Memory_t *pSPS2Memory; // DMA memory descriptor
 Dn_CHCR_t chcrValue; // Value sent to DMA controller to
 // initiate transfer
 Dn_SADR_t sadrValue; // Destination scratch pad address
 Dn_MADR_t madrValue; // Source memory address

 iSPS2Device=sps2Init(); // Initialize the SPS2 device

 if (iSPS2Device<0) {
 fprintf(stderr,"Error initializing SPS2 library\n");
 exit(-1);
 }

 // Allocate 4K of memory. We're allocating in 4K chunks, we want this
 // memory to be cached this could improve performance if we did a lot
 // of work on this memory before transferring. We have to remember to
 // flush the cache before the transfer
 pSPS2Memory=sps2Allocate(4096, SPS2_MAP_BLOCK_4K | SPS2_MAP_CACHED,
 iSPS2Device);

 if (!pSPS2Memory) {
 fprintf(stderr, "Error allocating memory\n");
 exit(-2);
 }

 // Get the actual pointer to the memory
 pcMemory=(char *) pSPS2Memory->pvStart;

 // Copy our string to the memory
 strcpy(pcMemory, OUTPUT_STRING);

 // Flush the cache

SPS2 Version 0.2.0

Copyright © 2002 Terratron Technologies Inc. 11

 sps2FlushCache(iSPS2Device);

 // Set the memory address of the DMA transfer. We're using channel
 // 9, which is a transfer to the scratch pad memory

 madrValue.i32=0; // Make sure all bits are zero
 // We're not copying from the scratch pad
 madrValue.s.SPR=0;
 // Get the physical address for the memory we allocated
 madrValue.s.ADDR=sps2GetPhysicalAddress(pcMemory, pSPS2Memory);
 // Set the memory address register in the DMA controller
 *EE_D9_MADR=madrValue.i32;

 sadrValue.i32=0; // Make sure all bits are zero
 // We're copying to the beginning of the scratch pad
 sadrValue.s.ADDR=0;
 // Set the scratch pad memory address in the DMA controller
 *EE_D9_SADR=sadrValue.i32;

 // Set the number of q-words to transfer.
 *EE_D9_QWC=OUTPUT_STRING_QWC;

 chcrValue.i32=0; // Set all CHCR bits to zero
 chcrValue.s.MOD=CHCR_MOD_NORMAL; // Normal DMA transfer
 chcrValue.s.STR=1; // Start DMA transfer

 // Set the Dn_CHCR register. This starts the DMA transfer since we set STR=1
 *EE_D9_CHCR=chcrValue.i32;

 sps2WaitForDMA(9, iSPS2Device); // Wait for DMA transfer to finish

 // Display the string now stored in the scratch pad
 printf((char *) SCRATCH_PAD);

 DPUT_GS_BGCOLOR(0xff0000); // BG color is BBGGRR, set it to all blue

 sps2Release(iSPS2Device); // Close the SPS2 library

 return 0;
}

SPS2 Version 0.2.0

Copyright © 2002 Terratron Technologies Inc. 12

SPS2 Programmer’s Guide

 The following sections outline the basic steps needed to perform common tasks with the
SPS2 library.

Performing a DMA Transfer
 One of the most important reasons to use SPS2 is because it grants you complete
access to the DMA controller. In order to perform a DMA transfer, a developer needs to perform
several steps:

1. Include sps2lib.h
2. Initialize the SPS2 device with sps2Init or _sps2Open
3. Allocate unswappable memory with sps2Allocate
4. Load data to be transferred into the memory
5. (optional) build DMA chains also within the unswappable memory
6. (optional) if using cacheable memory, flush the cache with sps2FlushCache
7. Setup the DMA controller registers (see Accessing the Emotion Engine Registers below)
8. Start the transfer by setting the STR bit on the Dn_CHCR register to 1 (see Accessing the

Emotion Engine Registers below)
9. (optional) wait for the transfer to complete with sps2WaitForDMA
10. Free the memory with sps2Free
11. Shut down the SPS2 device with sps2Release or _sps2Close

The example above performs all of these steps except for #5 because it performs a normal mode
transfer.

Also, note that there are a number of unions defined for some of the registers is
sps2registers.h for your convenience. As an example, this is the union for the Dn_CHCR
registers.

typedef union Dn_CHCR {
 sps2uint32 i32;

 struct {
 unsigned int DIR : 1;
 unsigned int _PAD1 : 1;
 unsigned int MOD : 2;
 unsigned int ASP : 2;
 unsigned int TTE : 1;
 unsigned int TIE : 1;
 unsigned int STR : 1;
 unsigned int _PAD2 : 10;
 unsigned int TAG_PCE : 2;
 unsigned int TAG_ID : 3;
 unsigned int TAG_IRQ : 1;
 } s;
} Dn_CHCR_t;

SPS2 Version 0.2.0

Copyright © 2002 Terratron Technologies Inc. 13

Accessing the Emotion Engine Registers

In order to access the Emotion Engine registers directly using SPS2, a developer may
use one of the two methods outlined below. Note that because the FIFO registers are 128 bits in
length and they must be read from/written to all at once, SPS2 provides access functions instead
of 128 bit pointers. This is similar to the 64 bit Graphics Synthesizer registers.
The Emotion Engine register macros are defined in the file sps2registers.h

Method 1 Using the SPS2 Core Function Set:

1. Include sps2lib.h
2. Initialize the SPS2 device with sps2Init.
3. Access the Emotion Engine registers by using the pointers listed below.
4. Release the SPS2 device with sps2Release (or just exit the application).

Timer
EE_T0_COUNT
EE_T0_MODE
EE_T0_COMP
EE_T0_HOLD

EE_T1_COUNT
EE_T1_MODE
EE_T1_COMP
EE_T1_HOLD

EE_T2_COUNT
EE_T2_MODE
EE_T2_COMP

EE_T3_COUNT
EE_T3_MODE
EE_T3_COMP

IPU
EE_IPU_CMD
EE_IPU_CTRL
EE_IPU_BP
EE_IPU_TOP

GIF
EE_GIF_CTRL
EE_GIF_MODE
EE_GIF_STAT
EE_GIF_TAG0
EE_GIF_TAG1
EE_GIF_TAG2
EE_GIF_TAG3
EE_GIF_CNT
EE_GIF_P3CNT
EE_GIF_P3TAG

VIF0
EE_VIF0_STAT
EE_VIF0_FBRST
EE_VIF0_ERR
EE_VIF0_MARK
EE_VIF0_CYCLE
EE_VIF0_MODE
EE_VIF0_NUM

EE_VIF0_MASK
EE_VIF0_CODE
EE_VIF0_ITOPS
EE_VIF0_ITOP
EE_VIF0_R0
EE_VIF0_R1
EE_VIF0_R2
EE_VIF0_R3
EE_VIF0_C0
EE_VIF0_C1
EE_VIF0_C2
EE_VIF0_C3

VIF1
EE_VIF1_STAT
EE_VIF1_FBRST
EE_VIF1_ERR
EE_VIF1_MARK
EE_VIF1_CYCLE
EE_VIF1_MODE
EE_VIF1_NUM
EE_VIF1_MASK
EE_VIF1_CODE
EE_VIF1_ITOPS
EE_VIF1_BASE
EE_VIF1_OFST
EE_VIF1_TOPS
EE_VIF1_ITOP
EE_VIF1_TOP
EE_VIF1_R0
EE_VIF1_R1
EE_VIF1_R2
EE_VIF1_R3
EE_VIF1_C0
EE_VIF1_C1
EE_VIF1_C2
EE_VIF1_C3

FIFO
DPUT_EE_VIF0_FIFO(val)
DPUT_EE_VIF1_FIFO(val)
DGET_EE_VIF1_FIFO(val)
DPUT_EE_GIF_FIFO(val)
DGET_EE_IPU_out_FIFO
DPUT_EE_IPU_in_FIFO(val)

DMAC
EE_D0_CHCR
EE_D0_MADR
EE_D0_QWC
EE_D0_TADR
EE_D0_ASR0
EE_D0_ASR1

EE_D1_CHCR
EE_D1_MADR
EE_D1_QWC
EE_D1_TADR
EE_D1_ASR0
EE_D1_ASR1

EE_D2_CHCR
EE_D2_MADR
EE_D2_QWC
EE_D2_TADR
EE_D2_ASR0
EE_D2_ASR1

EE_D3_CHCR
EE_D3_MADR
EE_D3_QWC

EE_D4_CHCR
EE_D4_MADR
EE_D4_QWC
EE_D4_TADR

EE_D5_CHCR
EE_D5_MADR
EE_D5_QWC

EE_D6_CHCR
EE_D6_MADR
EE_D6_QWC
EE_D6_TADR

EE_D7_CHCR
EE_D7_MADR
EE_D7_QWC

EE_D8_CHCR
EE_D8_MADR

SPS2 Version 0.2.0

Copyright © 2002 Terratron Technologies Inc. 14

EE_D8_QWC
EE_D8_SADR

EE_D9_CHCR
EE_D9_MADR
EE_D9_QWC
EE_D9_TADR
EE_D9_SADR

EE_D_CTRL
EE_D_STAT
EE_D_PCR
EE_D_SQWC
EE_D_RBSR
EE_D_RBOR
EE_D_STADR
EE_D_ENABLER
EE_D_ENABLEW

INTC
EE_I_STAT
EE_I_MASK

SIF
EE_SB_SMFLG

Method 2 Using the SPS2 Extended Function Set:

1. Include sps2lib.h
2. Open the SPS2 device with _sps2Open
3. Obtain a base pointer to the Emotion Engine registers with _sps2MapEERegisters
4. Access the Emotion Engine registers by using the functions below with the base pointer:
5. Close the SPS2 device with _sps2Close (or just exit the application).

Timer
EE_T0_COUNT_OFF(base)
EE_T0_MODE_OFF(base)
EE_T0_COMP_OFF(base)
EE_T0_HOLD_OFF(base)

EE_T1_COUNT_OFF(base)
EE_T1_MODE_OFF(base)
EE_T1_COMP_OFF(base)
EE_T1_HOLD_OFF(base)

EE_T2_COUNT_OFF(base)
EE_T2_MODE_OFF(base)
EE_T2_COMP_OFF(base)

EE_T3_COUNT_OFF(base)
EE_T3_MODE_OFF(base)
EE_T3_COMP_OFF(base)

IPU
EE_IPU_CMD_OFF(base)
EE_IPU_CTRL_OFF(base)
EE_IPU_BP_OFF(base)
EE_IPU_TOP_OFF(base)

GIF
EE_GIF_CTRL_OFF(base)
EE_GIF_MODE_OFF(base)
EE_GIF_STAT_OFF(base)
EE_GIF_TAG0_OFF(base)
EE_GIF_TAG1_OFF(base)
EE_GIF_TAG2_OFF(base)
EE_GIF_TAG3_OFF(base)
EE_GIF_CNT_OFF(base)
EE_GIF_P3CNT_OFF(base)
EE_GIF_P3TAG_OFF(base)

VIF0
EE_VIF0_STAT_OFF(base)

EE_VIF0_FBRST_OFF(base)
EE_VIF0_ERR_OFF(base)
EE_VIF0_MARK_OFF(base)
EE_VIF0_CYCLE_OFF(base)
EE_VIF0_MODE_OFF(base)
EE_VIF0_NUM_OFF(base)
EE_VIF0_MASK_OFF(base)
EE_VIF0_CODE_OFF(base)
EE_VIF0_ITOPS_OFF(base)
EE_VIF0_ITOP_OFF(base)
EE_VIF0_R0_OFF(base)
EE_VIF0_R1_OFF(base)
EE_VIF0_R2_OFF(base)
EE_VIF0_R3_OFF(base)
EE_VIF0_C0_OFF(base)
EE_VIF0_C1_OFF(base)
EE_VIF0_C2_OFF(base)
EE_VIF0_C3_OFF(base)

VIF1
EE_VIF1_STAT_OFF(base)
EE_VIF1_FBRST_OFF(base)
EE_VIF1_ERR_OFF(base)
EE_VIF1_MARK_OFF(base)
EE_VIF1_CYCLE_OFF(base)
EE_VIF1_MODE_OFF(base)
EE_VIF1_NUM_OFF(base)
EE_VIF1_MASK_OFF(base)
EE_VIF1_CODE_OFF(base)
EE_VIF1_ITOPS_OFF(base)
EE_VIF1_BASE_OFF(base)
EE_VIF1_OFST_OFF(base)
EE_VIF1_TOPS_OFF(base)
EE_VIF1_ITOP_OFF(base)
EE_VIF1_TOP_OFF(base)
EE_VIF1_R0_OFF(base)
EE_VIF1_R1_OFF(base)
EE_VIF1_R2_OFF(base)
EE_VIF1_R3_OFF(base)
EE_VIF1_C0_OFF(base)

EE_VIF1_C1_OFF(base)
EE_VIF1_C2_OFF(base)
EE_VIF1_C3_OFF(base)

FIFO
DPUT_EE_VIF0_FIFO_OFF(
base, val)
DPUT_EE_VIF1_FIFO_OFF(
base, val)
DGET_EE_VIF1_FIFO_OFF(
base, val)
DPUT_EE_GIF_FIFO_OFF(b
ase, val)
DGET_EE_IPU_out_FIFO_O
FF(base)
DPUT_EE_IPU_in_FIFO_OF
F(base, val)

DMAC
EE_D0_CHCR_OFF(base)
EE_D0_MADR_OFF(base)
EE_D0_QWC_OFF(base)
EE_D0_TADR_OFF(base)
EE_D0_ASR0_OFF(base)
EE_D0_ASR1_OFF(base)

EE_D1_CHCR_OFF(base)
EE_D1_MADR_OFF(base)
EE_D1_QWC_OFF(base)
EE_D1_TADR_OFF(base)
EE_D1_ASR0_OFF(base)
EE_D1_ASR1_OFF(base)

EE_D2_CHCR_OFF(base)
EE_D2_MADR_OFF(base)
EE_D2_QWC_OFF(base)
EE_D2_TADR_OFF(base)
EE_D2_ASR0_OFF(base)
EE_D2_ASR1_OFF(base)

SPS2 Version 0.2.0

Copyright © 2002 Terratron Technologies Inc. 15

EE_D3_CHCR_OFF(base)
EE_D3_MADR_OFF(base)
EE_D3_QWC_OFF(base)

EE_D4_CHCR_OFF(base)
EE_D4_MADR_OFF(base)
EE_D4_QWC_OFF(base)
EE_D4_TADR_OFF(base)

EE_D5_CHCR_OFF(base)
EE_D5_MADR_OFF(base)
EE_D5_QWC_OFF(base)

EE_D6_CHCR_OFF(base)
EE_D6_MADR_OFF(base)
EE_D6_QWC_OFF(base)
EE_D6_TADR_OFF(base)

EE_D7_CHCR_OFF(base)
EE_D7_MADR_OFF(base)
EE_D7_QWC_OFF(base)

EE_D8_CHCR_OFF(base)
EE_D8_MADR_OFF(base)
EE_D8_QWC_OFF(base)
EE_D8_SADR_OFF(base)

EE_D9_CHCR_OFF(base)
EE_D9_MADR_OFF(base)
EE_D9_QWC_OFF(base)
EE_D9_TADR_OFF(base)
EE_D9_SADR_OFF(base)

EE_D_CTRL_OFF(base)

EE_D_STAT_OFF(base)
EE_D_PCR_OFF(base)
EE_D_SQWC_OFF(base)
EE_D_RBSR_OFF(base)
EE_D_RBOR_OFF(base)
EE_D_STADR_OFF(base)
EE_D_ENABLER_OFF(base)
EE_D_ENABLEW_OFF(base)

INTC
EE_I_STAT_OFF(base)
EE_I_MASK_OFF(base)

SIF
EE_SB_SMFLG_OFF(base)

SPS2 Version 0.2.0

Copyright © 2002 Terratron Technologies Inc. 16

Accessing the Graphics Synthesizer Registers

In order to access the Graphics Synthesizer registers directly using SPS2, a developer may use
one of the two methods outlined below. Note that unlike the Emotion Engine registers and the
Scratch Pad and Vertex Unit memories, the Graphics Synthesizer registers cannot be accessed
simply by assigning a value to the appropriate pointer.

For example, one would expect to set the background color in the following manner:

*GS_BGCOLOR=0xbbggrr;

but instead one must set the color in the following manner:

DPUT_GS_BGCOLOR(0xbbggrr);

The reason for this is that all Graphics Synthesizer registers are 64 bits in length. Unfortunately,
regardless of the pointer prototype, issuing a *GS_BGCOLOR results in two separate store
functions to store 32 bits at a time. This is a problem because with each store the Emotion
Engine will copy the value to the Graphics Synthesizer. This means that when the lower 32 bits
are stored they are sign extended to 64 bits and transferred regardless of the intended upper 32
bits. If the application is compiled to MIPS 3 standards so that the store produced is a single 64
bit store, the code ends up being incompatible with the other libraries on the PS2 Linux system.
The DPUT macros use some inline assembly to ensure that all 64 bits are store correctly in one
write.

The DPUT macros for the Graphics Synthesizer registers are all defined in sps2registers.h.

Method 1 Using the SPS2 Core Function Set:

5. Include sps2lib.h
6. Initialize the SPS2 device with sps2Init.
7. Set the Graphics Synthesizer registers with the following macros:

DPUT_GS_PMODE(value)
DPUT_GS_SMODE1(value)
DPUT_GS_SMODE2(value)
DPUT_GS_SRFSH(value)
DPUT_GS_SYNCH1(value)
DPUT_GS_SYNCH2(value)
DPUT_GS_SYNCV(value)
DPUT_GS_DISPFB1(value)
DPUT_GS_DISPLAY1(value)
DPUT_GS_DISPFB2(value)
DPUT_GS_DISPLAY2(value)
DPUT_GS_EXTBUF(value)
DPUT_GS_EXTDATA(value)
DPUT_GS_EXTWRITE(value)
DPUT_GS_BGCOLOR(value)
DPUT_GS_CSR(value)
DPUT_GS_IMR(value)
DPUT_GS_BUSDIR(value)
DPUT_GS_SIGBLID(value)

8. Release the SPS2 device with sps2Release (or just exit the application).

SPS2 Version 0.2.0

Copyright © 2002 Terratron Technologies Inc. 17

Method 2 Using the SPS2 Extended Function Set:
1. Include sps2lib.h
2. Open the SPS2 device with _sps2Open
3. Obtain a base pointer to the Graphics Synthesizer registers with _sps2MapGSRegisters
4. Set the Graphics Synthesizer registers by using the following macros with the base

pointer:
DPUT_GS_PMODE_OFF(base pointer, value)
DPUT_GS_SMODE1_OFF(base pointer, value)
DPUT_GS_SMODE2_OFF(base pointer, value)
DPUT_GS_SRFSH_OFF(base pointer, value)
DPUT_GS_SYNCH1_OFF(base pointer, value)
DPUT_GS_SYNCH2_OFF(base pointer, value)
DPUT_GS_SYNCV_OFF(base pointer, value)
DPUT_GS_DISPFB1_OFF(base pointer, value)
DPUT_GS_DISPLAY1_OFF(base pointer, value)
DPUT_GS_DISPFB2_OFF(base pointer, value)
DPUT_GS_DISPLAY2_OFF(base pointer, value)
DPUT_GS_EXTBUF_OFF(base pointer, value)
DPUT_GS_EXTDATA_OFF(base pointer, value)
DPUT_GS_EXTWRITE_OFF(base pointer, value)
DPUT_GS_BGCOLOR_OFF(base pointer, value)
DPUT_GS_CSR_OFF(base pointer, value)
DPUT_GS_IMR_OFF(base pointer, value)
DPUT_GS_BUSDIR_OFF(base pointer, value)
DPUT_GS_SIGBLID_OFF(base pointer, value)

5. Close the SPS2 device with _sps2Close (or just exit the application).

SPS2 Version 0.2.0

Copyright © 2002 Terratron Technologies Inc. 18

Accessing the Scratch Pad Memory

In order to access the Scratch Pad memory directly using SPS2, a developer may use one of the
two methods outlined below.

SCRATCH_PAD and SCRATCH_PAD_OFF are defined in sps2scratchpad.h.

Method 1 Using the SPS2 Core Function Set:

1. Include sps2lib.h
2. Initialize the SPS2 device with sps2Init.
3. Access the Scratch Pad memory by using the SCRATCH_PAD pointer.
4. Release the SPS2 device with sps2Release (or just exit the application).

Method 2 Using the SPS2 Extended Function Set:

1. Include sps2lib.h
2. Open the SPS2 device with _sps2Open
3. Obtain a base pointer to the Scratch Pad memory with _sps2MapScratchPad
4. Access the Scratch Pad memory by using the SCRATCH_PAD_OFF(base pointer)

function with the base pointer
5. Close the SPS2 device with _sps2Close (or just exit the application).

SPS2 Version 0.2.0

Copyright © 2002 Terratron Technologies Inc. 19

Accessing the Vertex Unit Memories

In order to access the Vertex Unit memories directly using SPS2, a developer may use one of the
two methods outlined below.

The Vertex Unit functions and pointers are defined in sps2vumemory.h.

Method 1 Using the SPS2 Core Function Set:

1. Include sps2lib.h
2. Initialize the SPS2 device with sps2Init.
3. Access the Vertex Unit memories by using the following pointers:

VU0_MEM
VU0_MICRO_MEM
VU1_MEM
VU1_MICRO_MEM

4. Release the SPS2 device with sps2Release (or just exit the application).

Method 2 Using the SPS2 Extended Function Set:

1. Include sps2lib.h
2. Open the SPS2 device with _sps2Open
3. Obtain a base pointer to the Vertex Unit memories with _sps2MapVUMemory
4. Access the Vertex Unit memories by using the following functions with the base pointer:

VU0_MEM_OFF(base pointer)
VU0_MICRO_MEM_OFF(base pointer)
VU1_MEM_OFF(base pointer)
VU1_MICRO_MEM_OFF(base pointer)

5. Close the SPS2 device with _sps2Close (or just exit the application).

SPS2 Version 0.2.0

Copyright © 2002 Terratron Technologies Inc. 20

SPS2 Core Function Set Reference

 In the next pages, the instructions that constitute the SPS2 Core Function Set will be
outlined. Developers are encouraged to use only the functions in the core function set as much
as possible. They provide a good set of default actions for extreme convenience and ease of
development while minimizing the amount of overhead they introduce to an application.

SPS2 Version 0.2.0

Copyright © 2002 Terratron Technologies Inc. 21

sps2Init

Prototype:
 static inline int sps2Init();

Parameters:
 None

Return Value:

• If successful, a descriptor to the SPS2 device (>=0)
• If unsuccessful, an error number <0

See Also:
 _sps2Open, sps2Release

Comments:
 This function gains access to the SPS2 kernel module. For developers using the SPS2
Core Function Set only, it should be the first function invoked. It performs a number of functions:

1. It connects to the SPS2 device
2. It ensures that the SPS2 device supports the current version and hasn’t been already

opened. If it has been already opened, it merely duplicates the descriptor from the
previous open. This has important ramifications which are outlined below.

3. It maps the Emotion Engine (EE) registers to SPS2_EE_REGISTERS_START and aborts the
application if this is not possible. This allows programmers to be sure that, if sps2Init
returns, the EE registers will be mapped starting at SPS2_EE_REGISTERS_START. This
allows programmers to write applications that use the fixed pointers to the EE registers
defined in sps2registers.h such as EE_D9_CHCR.

4. It maps the Graphics Synthesizer (GS) registers to SPS2_GS_REGISTERS_START allowing,
like in #3, developers to use fixed functions such as DPUT_GS_BGCOLOR.

5. It maps the scratch pad memory to SPS2_SCRATCH_PAD_START allowing, like in #3,
developers to use fixed pointers such as SCRATCH_PAD.

6. It maps the Vertex Unit (VU) memory to SPS2_VU_MEMORY_START allowing, once again as
in #3, developers to access fixed pointers such as VU0_MICRO_MEM.

In order for #3-#6 to succeed, the virtual memory area 0x00010000-0x0004ffff must be

free once your application is loaded. For most normal applications, this should not be a problem,
however, developers with special link scripts may need to adjust their scripts to ensure this
memory area is free. In the unlikely event that this is not possible, sps2Init cannot be used and
developers are directed to _sps2Open in the SPS2 Extended Function Set.

 Because of step #2, multiple instances of sps2Open end up sharing the same resources,
even though they are assigned different descriptors. This means:

• Memory allocated by sps2Allocate will not be released until the all of the descriptors
have been closed up using sps2Release unless the memory is explicitly released with
sps2Free. Basically this means that you shouldn’t assume that sps2Release will free up
all your memory, you should explicitly free up all your allocations instead.

• The Emotion Engine and Graphics Synthesizer registers as well as the Scratch Pad and
Vertex Unit memories won’t go away just because one descriptor is closed. They will
only go away once all of the descriptors have been closed. This is good because a
module that chooses to issue sps2Init then sps2Release need not worry that by
releasing it’s descriptor it will cause the application to stop working by releasing the fixed
pointers.

SPS2 Version 0.2.0

Copyright © 2002 Terratron Technologies Inc. 22

sps2Release

Prototype:
 static inline int sps2Release(int iSPS2Device);

Parameters:
 iSPS2Device – An SPS2 device descriptor returned by sps2Init

Return Value:
 None

See Also:
 sps2Init

Comments:
 This function releases an SPS2 device descriptor. If it is the last SPS2 device descriptor
being released, then it frees up all memory that hasn’t been explicitly freed, and unmaps the
Emotion Engine and Graphics Synthesizer registers as well as the Scratch Pad and Vertex Unit
memories from SPS2_EE_REGISTERS_START, SPS2_GS_REGISTERS_START,
SPS2_SCRATCH_PAD_START and SPS2_VU_MEMORY_START respectively.

Caution
 All of the sps2Memory_t structures, however are not freed (only the actual memory they
describe) which could cause a memory leak unless the developer explicitly frees up the memory
by using sps2Free.

SPS2 Version 0.2.0

Copyright © 2002 Terratron Technologies Inc. 23

sps2Allocate

Prototype:
 static inline sps2Memory_t *sps2Allocate(unsigned long ulSize,
 int iMapOptions,
 int iDeviceHandle);

Parameters:
 ulSize -- The number of bytes to allocate, which will be rounded up by the block size
 iMapOptions – One of:

 SPS2_MAP_BLOCK_4K to map memory in 4K increments,
 SPS2_MAP_BLOCK_8K to map memory in 8K increments,
 SPS2_MAP_BLOCK_16K to map memory in 16K increments,
 SPS2_MAP_BLOCK_32K to map memory in 32K increments,
 SPS2_MAP_BLOCK_64K to map memory in 64K increments,
 SPS2_MAP_BLOCK_128K to map memory in 128K increments

bitwise-ORed with one of:
 SPS2_MAP_CACHED to allow memory be cached (the default value),
 SPS2_MAP_UNCACHED to allocate this memory as uncached

 iDeviceHandle – An SPS2 device descriptor returned by sps2Init or _sps2Open

Return Value:

• On success, an sps2Memory_t structure
• On failure, null, most likely due to insufficient memory

See Also:
 sps2Init, _sps2Open, sps2Free, sps2FlushCache, sps2GetPhysicalAddress

Comments:
 THE ONLY BLOCK SIZE SUPPORTED WITH THIS RELEASE IS 4K.
 Memory returned by sps2Allocate is only physically contiguous in increments of the
block size. This means that if you allocate 8K in 4K blocks, bytes 0-4095 will be physically
contiguous and bytes 4096-8191 will be physically contiguous. You should NOT treat it as a
single 8K chunk! Whereas it is okay to do so while populating the data (e.g. reading in a 8K
texture from a file into the memory), when you use it to perform DMA transfers you will have to
treat it as a sequence of 2 consecutive 4K chunks.

 Remember, the whole allocation is contiguous in virtual space, but only individual chunks
are contiguous in physical space. Your application understands virtual space, the DMA controller
understands physical space. Also, for future versions, when you try to allocate larger increments,
remember that there is less of a chance that your allocation will succeed.

 Memory allocated with sps2Allocate is freed with sps2Free.
 To get the virtual address of your memory, use the pvStart field in the sps2Memory_t
structure that is returned. pvStart IS THE ONLY FIELD OF INTEREST TO DEVELOPERS.
 To get the physical address of any offset within your memory, use the
sps2GetPhysicalAddress function.
 If you are using cacheable memory and would like to flush it in order to start a DMA
transfer, use sps2FlushCache.

SPS2 Version 0.2.0

Copyright © 2002 Terratron Technologies Inc. 24

sps2Free

Prototype:
 static inline void sps2Remap(sps2Memory_t *pMapping);

Parameters:
 pMapping – An sps2Memory_t structure returned by sps2Allocate or sps2Remap

Return Value:
 None

See Also:
 sps2Init, _sps2Open, sps2Allocate, sps2Remap

Comments:
 This function releases memory allocated through sps2Allocate. If the memory has
been remapped one or more times by sps2Remap then this will only release the memory once all
mappings (including the original one) have been freed.

 It also releases the memory associated with the sps2Memory_t structure.

SPS2 Version 0.2.0

Copyright © 2002 Terratron Technologies Inc. 25

sps2Remap

Prototype:
 static inline sps2Memory_t *sps2Remap(sps2Memory_t *pOriginalArea,
 int iMapOptions,
 int iDeviceHandle);

Parameters:
 pOriginalArea – An sps2Memory_t structure returned by sps2Allocate or sps2Remap
 iMapOptions – One of:

 SPS2_MAP_BLOCK_4K to map memory in 4K increments,
 SPS2_MAP_BLOCK_8K to map memory in 8K increments,
 SPS2_MAP_BLOCK_16K to map memory in 16K increments,
 SPS2_MAP_BLOCK_32K to map memory in 32K increments,
 SPS2_MAP_BLOCK_64K to map memory in 64K increments,
 SPS2_MAP_BLOCK_128K to map memory in 128K increments

bitwise-ORed with one of:
 SPS2_MAP_CACHED to allow memory be cached (the default value),
 SPS2_MAP_UNCACHED to allocate this memory as uncached

 iDeviceHandle – An SPS2 device descriptor returned by sps2Init or _sps2Open

Return Value:

• On success, an sps2Memory_t structure
• On failure, null, most likely due to insufficient memory

See Also:
 sps2Init, _sps2Open, sps2Allocate, sps2Free

Comments:
 This function allows you to “remap” an area allocated through sps2Allocate. The
primary reason for doing this is to allow the programmer to have both cached and uncached
pointers to the same area of memory (i.e. use sps2Allocate with SPS2_MAP_CACHED then use
sps2Remap with SPS2_MAP_UNCACHED). The block size should be the same as the one used with
sps2Allocate.

 sps2Free will only release the memory once all mappings of an area have been freed.

Caution:
 Developers are cautioned to be very careful when using both cached and uncached
pointers to the same area of memory. If within a single cache frame the memory is accessed
both cached and uncached without an intermediate sps2FlushCache, the system can crash.

SPS2 Version 0.2.0

Copyright © 2002 Terratron Technologies Inc. 26

sps2GetPhysicalAddress

Prototype:
 static inline unsigned long sps2GetPhysicalAddress(void *pvAddress,
 sps2Memory_t *pDescriptor);

Parameters:
 pvAddress – The virtual address for which to retrieve a physical address
 pDescriptor – The sps2Memory_t structure returned by sps2Allocate or sps2Remap that
corresponds to this pointer.

Return Value:

• On success, returns the physical address of pvAddress
• On failure, the application is terminated.

See Also:
 sps2Allocate, sps2Remap

Comments:
 This function gives the physical address for a virtual address. This is important because
in order to perform a DMA transfer, the DMA controller needs to be given a physical address.

 The reason this function terminates the application if a bad pointer or descriptor is passed
in is that it is very likely that the function is called immediately before a DMA transfer. This will
prevent the developer from accidentally passing an error return value to the DMA controller as the
address and causing the system to crash. Basically, if this function were to return an error code,
the program is already sufficiently broken to warrant an exit.

SPS2 Version 0.2.0

Copyright © 2002 Terratron Technologies Inc. 27

sps2FlushCache

Prototype:
 static inline int sps2FlushCache(int iDeviceHandle);

Parameters:
 iDeviceHandle – An SPS2 device descriptor returned by sps2Init or _sps2Open

Return Value:

• zero on success
• non-zero if an invalid device handle was specified

See Also:
 sps2Init, _sps2Open

Comments:
 This function flushes all caches. This is beneficial if the memory returned by
sps2Allocate or sps2Remap was being cached. Flushing the cache allows DMA transfers to
properly transfer all the contents of the memory.

SPS2 Version 0.2.0

Copyright © 2002 Terratron Technologies Inc. 28

sps2WaitForDMA

Prototype:
 static inline int sps2WaitForDMA(int iChannel,
 int iDeviceHandle);

Parameters:
 iChannel – the DMA channel to wait for.
 iDeviceHandle – An SPS2 device descriptor returned by sps2Init or _sps2Open

Return Value:

• zero on success
• non-zero if an invalid device handle or DMA channel was specified

See Also:
 sps2Init, _sps2Open

Comments:
 This function allows the scheduler to run other applications on the system while a transfer
is in progress. If your application is time critical and must continue the instant that the DMA
transfer has ended, then you should consider creating a spinlock loop instead.

 This function returns after the CHCR register corresponding to the channel has the STR
bit cleared.

SPS2 Version 0.2.0

Copyright © 2002 Terratron Technologies Inc. 29

SPS2 Extended Function Set
Reference

 The SPS2 Extended Function Set is a superset of the SPS2 Core Function Set. It
includes all of the functions in the core function set as well as a few more. There are two major
differences between the core and extended function sets.

 First, the core function set contains a function called sps2Init. This function opens up
the SPS2 Kernel Module and prepares a number of preset mappings for the Emotion Engine and
Graphics Synthesizer registers as well as the Scratch Pad and Vertex Unit memories. Because
these preset mappings use a fixed location, applications using these registers or memories can
use predetermined pointers to achieve maximum efficiency while minimizing the difference
between application development within the Linux environment and development within the native
PS2 environment.

 The extended function set defines a simpler function called _sps2Open that performs
less initialization than sps2Init. Specifically, _sps2Open does not map the registers and
memories as sps2Init does, but instead, the SPS2 Extended Function Set provides a number of
additional functions to map these registers and memories to any location the developer desires.
Whereas this provides slightly more flexibility to the developer, there is a tradeoff. Because the
developer does not know in advance exactly where these registers and memories will be mapped
to, they must use offset functions to access the individual registers within the memory mapping
(as opposed to predefined pointers that are made available in the SPS2 Core Function Set).

 To illustrate the example, consider the following two code segments that are intended to
set the value of the EE_D0_QWC register to 12.

First, using the SPS2 Core Function Set:

int iSPS2Device=sps2Init();
*EE_D0_QWC=0;
sps2Release(iSPS2Device);

Now, using the SPS2 Extended Function Set

int iSPS2Device=_sps2Open();
void *pvEERegisters=_sps2MapEERegisters(0,iSPS2Device);
*EE_D0_QWC_OFF (pvEERegisters)=0;
_sps2Close(iSPS2Device);

In some obscure situations (where custom linking is used for the application), it is
possible for the first example to fail. Typically the developer would be able to modify their link
script so that that would not become an issue. On the other hand, the second example would
work even with the most obscure link scripts, but the developer would now need to distribute the
“base pointer” pvEERegisters throughout the application, possibly by defining it as a global
variable.

The second difference between the function sets is that the device handles in the SPS2

Extended Function Set are not shared. This means that if a process opens the device, allocates
some memory (or maps some of the registers) and then closes the devices, the allocations and
mappings are freed. This is true even if the device was opened multiple times before being
closed. On the other hand, with the core set, if the device is initialized multiple times with
sps2Init, none of the resources are released until all instances are closed. The prior situation
makes sense for a developer of an independent module who wishes to create a library of

SPS2 Version 0.2.0

Copyright © 2002 Terratron Technologies Inc. 30

functions or classes that work independently of the rest of the system. The latter example makes
more sense for most developers because they can open and close the module within their
application repeatedly without having to worry about accidentally unmapping some registers
being used by another function.

SPS2 Version 0.2.0

Copyright © 2002 Terratron Technologies Inc. 31

_sps2Open

Prototype:
 static inline int sps2Open();

Parameters:
 None

Return Value:

• If successful, a descriptor to the SPS2 device (>=0)
• If unsuccessful, an error number <0

See Also:
 sps2Init, _sps2Close

Comments:
 This function gains access to the SPS2 kernel module.

1. It connects to the SPS2 device
2. It ensures that the SPS2 device supports the current version.

SPS2 Version 0.2.0

Copyright © 2002 Terratron Technologies Inc. 32

_sps2Close

Prototype:
 static inline int _sps2Close(int iSPS2Device);

Parameters:
 iSPS2Device – An SPS2 device descriptor returned by _sps2Open

Return Value:
 None

See Also:
 _sps2Open

Comments:
 This function releases an SPS2 device descriptor. This will release the memory that has
been allocated and unmap any of the Emotion Engine and Graphics Synthesizer registers as well
as Scratch Pad and Vertex Unit memories that may have been mapped.

Caution
 All of the sps2Memory_t structures, however are not freed (only the actual memory they
describe) which could cause a memory leak unless the developer explicitly frees up the memory
by using sps2Free.

SPS2 Version 0.2.0

Copyright © 2002 Terratron Technologies Inc. 33

_sps2MapEERegisters

Prototype:
 static inline int _sps2MapEERegisters(void *pvWhere,
 int iSPS2Device);

Parameters:
 pvWhere – The desired location at which to map the registers (can be zero). If this
location is not suitable, the library will map the registers at an appropriate location

iSPS2Device – An SPS2 device descriptor returned by _sps2Open or by sps2Init

Return Value:

• On success, the base pointer of the address at which the registers have been mapped
• On failure, MAP_FAILED (-1)

See Also:
 _sps2Open

Comments:
 This function attempts to map the Emotion Engine registers at a specified location. If the
location is zero or unsuitable for the mapping, the function will map the registers elsewhere and
indicate, through its return value, where they have been mapped.

 There are a number of preprocessor macros defined in sps2registers.h that can be
used to determine the exact location of a specific Emotion Engine register relative to the base
pointer.

These macros are in the form of EE_*_OFF(baase pointer), such as EE_D0_CHCR_OFF(base
pointer). The value of base pointer that should be passed in is the return value of this
function.

 These registers will be unmapped once the device handle has been closed with
_sps2Close.

SPS2 Version 0.2.0

Copyright © 2002 Terratron Technologies Inc. 34

_sps2MapGSRegisters

Prototype:
 static inline int _sps2MapGSRegisters(void *pvWhere,
 int iSPS2Device);

Parameters:
 pvWhere – The desired location at which to map the registers (can be zero). If this
location is not suitable, the library will map the registers at an appropriate location

iSPS2Device – An SPS2 device descriptor returned by _sps2Open or by sps2Init

Return Value:

• On success, the base pointer of the address at which the registers have been mapped
• On failure, MAP_FAILED (-1)

See Also:
 _sps2Open

Comments:
 This function attempts to map the Graphics Synthesizer registers at a specified location.
If the location is zero or unsuitable for the mapping, the function will map the registers elsewhere
and indicate, through its return value, where they have been mapped.

 There are a number of preprocessor macros defined in sps2registers.h that can be
used to determine the exact location of a specific Graphics Synthesizer register relative to the
base pointer.

These macros are in the form of DPUT_GS_*_OFF(base pointer, value), such as
DPUT_GS_BGCOLOR_OFF(base pointer, value). The value of base pointer that should be
passed in is the return value of this function.

 These registers will be unmapped once the device handle has been closed with
_sps2Close.

SPS2 Version 0.2.0

Copyright © 2002 Terratron Technologies Inc. 35

_sps2MapVUMemory

Prototype:
 static inline int _sps2MapVUMemory(void *pvWhere,
 int iSPS2Device);

Parameters:
 pvWhere – The desired location at which to map the memory (can be zero). If this
location is not suitable, the library will map the memory at an appropriate location

iSPS2Device – An SPS2 device descriptor returned by _sps2Open or by sps2Init

Return Value:

• On success, the base pointer of the address at which the Vertex Unit memories have
been mapped

• On failure, MAP_FAILED (-1)

See Also:
 _sps2Open

Comments:
 This function attempts to map the Vertex Unit memories at a specified location. If the
location is zero or unsuitable for the mapping, the function will map the memories elsewhere and
indicate, through its return value, where they have been mapped.

 There are a number of preprocessor macros defined in sps2vumemory.h that can be
used to determine the exact location of a specific Vertex Unit memory relative to the base pointer.

These macros are VU0_MEM_OFF(base pointer), VU0_MICRO_MEM_OFF(base pointer),
VU1_MEM_OFF(base pointer) and VU1_MICRO_MEM_OFF(base pointer). The value of base
pointer that should be passed in is the return value of this function.

 These memories will be unmapped once the device handle has been closed with
_sps2Close.

SPS2 Version 0.2.0

Copyright © 2002 Terratron Technologies Inc. 36

_sps2MapScratchPad

Prototype:
 static inline int _sps2MapScratchPad(void *pvWhere,
 int iSPS2Device);

Parameters:
 pvWhere – The desired location at which to map the memory (can be zero). If this
location is not suitable, the library will map the memory at an appropriate location

iSPS2Device – An SPS2 device descriptor returned by _sps2Open or by sps2Init

Return Value:

• On success, the base pointer of the address at which the Scratch Pad memory has been
mapped

• On failure, MAP_FAILED (-1)

See Also:
 _sps2Open

Comments:
 This function attempts to map the Scratch Pad memory at a specified location. If the
location is zero or unsuitable for the mapping, the function will map the memory elsewhere and
indicate, through its return value, where they have been mapped.

 There is a preprocessor macro defined in sps2scratchpad.h that is offered for
compatibility with the functionality of the other _sps2Map* functions.

This macro is called SCRATCH_PAD_OFF(base pointer). The value of base pointer that should
be passed in is the return value of this function. Since there is only one scratch pad memory this
function does nothing except for return the base pointer.

 The memory will be unmapped once the device handle has been closed with
_sps2Close.

SPS2 Version 0.2.0

Copyright © 2002 Terratron Technologies Inc. 37

Index

_sps2Close, 12, 14, 17, 18, 19, 29, 31, 32, 33,

34, 35, 36
_sps2MapEERegisters, 14, 29, 33
_sps2MapGSRegisters, 17, 34
_sps2MapScratchPad, 18, 36
_sps2MapVUMemory, 19, 35
_sps2Open, 12, 14, 17, 18, 19, 21, 23, 24, 25,

27, 28, 29, 31, 32, 33, 34, 35, 36
Acknowledgements, 5
base pointer, 14, 17, 18, 19, 29, 33, 34, 35, 36
bumpmap, 7, 9
cache, 10, 12, 25, 27
cached, 3, 10, 23, 25, 27
common, 7
DGET_EE_IPU_out_FIFO, 13
DGET_EE_IPU_out_FIFO_OFF, 14
DGET_EE_VIF1_FIFO, 13
DGET_EE_VIF1_FIFO_OFF, 14
Directories. See SPS2 Files and Directories
DMA, 3, 6, 10, 11, 12

controller, 3, 10, 11, 12, 23, 26
controllet, 12
transfer, 3, 6, 10, 11, 12, 23, 26, 27, 28

DMAC, 13, 14. See DMA:controller
Dn_CHCR, 10, 11, 12
Dn_CHCR_t, 10, 12
Dn_MADR_t, 10
Dn_SADR_t, 10
DPUT_EE_GIF_FIFO, 13
DPUT_EE_GIF_FIFO_OFF, 14
DPUT_EE_IPU_in_FIFO, 13
DPUT_EE_IPU_in_FIFO_OFF, 14
DPUT_EE_VIF0_FIFO, 13
DPUT_EE_VIF0_FIFO_OFF, 14
DPUT_EE_VIF1_FIFO, 13
DPUT_EE_VIF1_FIFO_OFF, 14
DPUT_GS_BGCOLOR, 11, 16, 21, 34
DPUT_GS_BGCOLOR_OFF, 17, 34
DPUT_GS_BUSDIR, 16
DPUT_GS_BUSDIR_OFF, 17
DPUT_GS_CSR, 16
DPUT_GS_CSR_OFF, 17
DPUT_GS_DISPFB1, 16
DPUT_GS_DISPFB1_OFF, 17
DPUT_GS_DISPFB2, 16
DPUT_GS_DISPFB2_OFF, 17
DPUT_GS_DISPLAY1, 16
DPUT_GS_DISPLAY1_OFF, 17
DPUT_GS_DISPLAY2, 16
DPUT_GS_DISPLAY2_OFF, 17
DPUT_GS_EXTBUF, 16
DPUT_GS_EXTBUF_OFF, 17

DPUT_GS_EXTDATA, 16
DPUT_GS_EXTDATA_OFF, 17
DPUT_GS_EXTWRITE, 16
DPUT_GS_EXTWRITE_OFF, 17
DPUT_GS_IMR, 16
DPUT_GS_IMR_OFF, 17
DPUT_GS_PMODE, 16
DPUT_GS_PMODE_OFF, 17
DPUT_GS_SIGBLID, 16
DPUT_GS_SIGBLID_OFF, 17
DPUT_GS_SMODE1, 16
DPUT_GS_SMODE1_OFF, 17
DPUT_GS_SMODE2, 16
DPUT_GS_SMODE2_OFF, 17
DPUT_GS_SRFSH, 16
DPUT_GS_SRFSH_OFF, 17
DPUT_GS_SYNCH1, 16
DPUT_GS_SYNCH1_OFF, 17
DPUT_GS_SYNCH2, 16
DPUT_GS_SYNCH2_OFF, 17
DPUT_GS_SYNCV, 16
DPUT_GS_SYNCV_OFF, 17
dyntexs, 7, 9
EE. See Emotion Engine
EE_D_CTRL, 14
EE_D_CTRL_OFF, 15
EE_D_ENABLER, 14
EE_D_ENABLER_OFF, 15
EE_D_ENABLEW, 14
EE_D_ENABLEW_OFF, 15
EE_D_PCR, 14
EE_D_PCR_OFF, 15
EE_D_RBOR, 14
EE_D_RBOR_OFF, 15
EE_D_RBSR, 14
EE_D_RBSR_OFF, 15
EE_D_SQWC, 14
EE_D_SQWC_OFF, 15
EE_D_STADR, 14
EE_D_STADR_OFF, 15
EE_D_STAT, 14
EE_D_STAT_OFF, 15
EE_D0_ASR0, 13
EE_D0_ASR0_OFF, 14
EE_D0_ASR1, 13
EE_D0_ASR1_OFF, 14
EE_D0_CHCR, 13
EE_D0_CHCR_OFF, 14, 33
EE_D0_MADR, 13
EE_D0_MADR_OFF, 14
EE_D0_QWC, 13, 29
EE_D0_QWC_OFF, 14, 29

SPS2 Version 0.2.0

Copyright © 2002 Terratron Technologies Inc. 38

EE_D0_TADR, 13
EE_D0_TADR_OFF, 14
EE_D1_ASR0, 13
EE_D1_ASR0_OFF, 14
EE_D1_ASR1, 13
EE_D1_ASR1_OFF, 14
EE_D1_CHCR, 13
EE_D1_CHCR_OFF, 14
EE_D1_MADR, 13
EE_D1_MADR_OFF, 14
EE_D1_QWC, 13
EE_D1_QWC_OFF, 14
EE_D1_TADR, 13
EE_D1_TADR_OFF, 14
EE_D2_ASR0, 13
EE_D2_ASR0_OFF, 14
EE_D2_ASR1, 13
EE_D2_ASR1_OFF, 14
EE_D2_CHCR, 13
EE_D2_CHCR_OFF, 14
EE_D2_MADR, 13
EE_D2_MADR_OFF, 14
EE_D2_QWC, 13
EE_D2_QWC_OFF, 14
EE_D2_TADR, 13
EE_D2_TADR_OFF, 14
EE_D3_CHCR, 13
EE_D3_CHCR_OFF, 15
EE_D3_MADR, 13
EE_D3_MADR_OFF, 15
EE_D3_QWC, 13
EE_D3_QWC_OFF, 15
EE_D4_CHCR, 13
EE_D4_CHCR_OFF, 15
EE_D4_MADR, 13
EE_D4_MADR_OFF, 15
EE_D4_QWC, 13
EE_D4_QWC_OFF, 15
EE_D4_TADR, 13
EE_D4_TADR_OFF, 15
EE_D5_CHCR, 13
EE_D5_CHCR_OFF, 15
EE_D5_MADR, 13
EE_D5_MADR_OFF, 15
EE_D5_QWC, 13
EE_D5_QWC_OFF, 15
EE_D6_CHCR, 13
EE_D6_CHCR_OFF, 15
EE_D6_MADR, 13
EE_D6_MADR_OFF, 15
EE_D6_QWC, 13
EE_D6_QWC_OFF, 15
EE_D6_TADR, 13
EE_D6_TADR_OFF, 15
EE_D7_CHCR, 13
EE_D7_CHCR_OFF, 15

EE_D7_MADR, 13
EE_D7_MADR_OFF, 15
EE_D7_QWC, 13
EE_D7_QWC_OFF, 15
EE_D8_CHCR, 13
EE_D8_CHCR_OFF, 15
EE_D8_MADR, 13
EE_D8_MADR_OFF, 15
EE_D8_QWC, 14
EE_D8_QWC_OFF, 15
EE_D8_SADR, 14
EE_D8_SADR_OFF, 15
EE_D9_CHCR, 11, 14, 21
EE_D9_CHCR_OFF, 15
EE_D9_MADR, 11, 14
EE_D9_MADR_OFF, 15
EE_D9_QWC, 11, 14
EE_D9_QWC_OFF, 15
EE_D9_SADR, 11, 14
EE_D9_SADR_OFF, 15
EE_D9_TADR, 14
EE_D9_TADR_OFF, 15
EE_GIF_CNT, 13
EE_GIF_CNT_OFF, 14
EE_GIF_CTRL, 13
EE_GIF_CTRL_OFF, 14
EE_GIF_MODE, 13
EE_GIF_MODE_OFF, 14
EE_GIF_P3CNT, 13
EE_GIF_P3CNT_OFF, 14
EE_GIF_P3TAG, 13
EE_GIF_P3TAG_OFF, 14
EE_GIF_STAT, 13
EE_GIF_STAT_OFF, 14
EE_GIF_TAG0, 13
EE_GIF_TAG0_OFF, 14
EE_GIF_TAG1, 13
EE_GIF_TAG1_OFF, 14
EE_GIF_TAG2, 13
EE_GIF_TAG2_OFF, 14
EE_GIF_TAG3, 13
EE_GIF_TAG3_OFF, 14
EE_I_MASK, 14
EE_I_MASK_OFF, 15
EE_I_STAT, 14
EE_I_STAT_OFF, 15
EE_IPU_BP, 13
EE_IPU_BP_OFF, 14
EE_IPU_CMD, 13
EE_IPU_CMD_OFF, 14
EE_IPU_CTRL, 13
EE_IPU_CTRL_OFF, 14
EE_IPU_TOP, 13
EE_IPU_TOP_OFF, 14
EE_SB_SMFLG, 14
EE_SB_SMFLG_OFF, 15

SPS2 Version 0.2.0

Copyright © 2002 Terratron Technologies Inc. 39

EE_T0_COMP, 13
EE_T0_COMP_OFF, 14
EE_T0_COUNT, 13
EE_T0_COUNT_OFF, 14
EE_T0_HOLD, 13
EE_T0_HOLD_OFF, 14
EE_T0_MODE, 13
EE_T0_MODE_OFF, 14
EE_T1_COMP, 13
EE_T1_COMP_OFF, 14
EE_T1_COUNT, 13
EE_T1_COUNT_OFF, 14
EE_T1_HOLD, 13
EE_T1_HOLD_OFF, 14
EE_T1_MODE, 13
EE_T1_MODE_OFF, 14
EE_T2_COMP, 13
EE_T2_COMP_OFF, 14
EE_T2_COUNT, 13
EE_T2_COUNT_OFF, 14
EE_T2_MODE, 13
EE_T2_MODE_OFF, 14
EE_T3_COMP, 13
EE_T3_COMP_OFF, 14
EE_T3_COUNT, 13
EE_T3_COUNT_OFF, 14
EE_T3_MODE, 13
EE_T3_MODE_OFF, 14
EE_VIF0_C0, 13
EE_VIF0_C0_OFF, 14
EE_VIF0_C1, 13
EE_VIF0_C1_OFF, 14
EE_VIF0_C2, 13
EE_VIF0_C2_OFF, 14
EE_VIF0_C3, 13
EE_VIF0_C3_OFF, 14
EE_VIF0_CODE, 13
EE_VIF0_CODE_OFF, 14
EE_VIF0_CYCLE, 13
EE_VIF0_CYCLE_OFF, 14
EE_VIF0_ERR, 13
EE_VIF0_ERR_OFF, 14
EE_VIF0_FBRST, 13
EE_VIF0_FBRST_OFF, 14
EE_VIF0_ITOP, 13
EE_VIF0_ITOP_OFF, 14
EE_VIF0_ITOPS, 13
EE_VIF0_ITOPS_OFF, 14
EE_VIF0_MARK, 13
EE_VIF0_MARK_OFF, 14
EE_VIF0_MASK, 13
EE_VIF0_MASK_OFF, 14
EE_VIF0_MODE, 13
EE_VIF0_MODE_OFF, 14
EE_VIF0_NUM, 13
EE_VIF0_NUM_OFF, 14

EE_VIF0_R0, 13
EE_VIF0_R0_OFF, 14
EE_VIF0_R1, 13
EE_VIF0_R1_OFF, 14
EE_VIF0_R2, 13
EE_VIF0_R2_OFF, 14
EE_VIF0_R3, 13
EE_VIF0_R3_OFF, 14
EE_VIF0_STAT, 13
EE_VIF0_STAT_OFF, 14
EE_VIF1_BASE, 13
EE_VIF1_BASE_OFF, 14
EE_VIF1_C0, 13
EE_VIF1_C0_OFF, 14
EE_VIF1_C1, 13
EE_VIF1_C1_OFF, 14
EE_VIF1_C2, 13
EE_VIF1_C2_OFF, 14
EE_VIF1_C3, 13
EE_VIF1_C3_OFF, 14
EE_VIF1_CODE, 13
EE_VIF1_CODE_OFF, 14
EE_VIF1_CYCLE, 13
EE_VIF1_CYCLE_OFF, 14
EE_VIF1_ERR, 13
EE_VIF1_ERR_OFF, 14
EE_VIF1_FBRST, 13
EE_VIF1_FBRST_OFF, 14
EE_VIF1_ITOP, 13
EE_VIF1_ITOP_OFF, 14
EE_VIF1_ITOPS, 13
EE_VIF1_ITOPS_OFF, 14
EE_VIF1_MARK, 13
EE_VIF1_MARK_OFF, 14
EE_VIF1_MASK, 13
EE_VIF1_MASK_OFF, 14
EE_VIF1_MODE, 13
EE_VIF1_MODE_OFF, 14
EE_VIF1_NUM, 13
EE_VIF1_NUM_OFF, 14
EE_VIF1_OFST, 13
EE_VIF1_OFST_OFF, 14
EE_VIF1_R0, 13
EE_VIF1_R0_OFF, 14
EE_VIF1_R1, 13
EE_VIF1_R1_OFF, 14
EE_VIF1_R2, 13
EE_VIF1_R2_OFF, 14
EE_VIF1_R3, 13
EE_VIF1_R3_OFF, 14
EE_VIF1_STAT, 13
EE_VIF1_STAT_OFF, 14
EE_VIF1_TOP, 13
EE_VIF1_TOP_OFF, 14
EE_VIF1_TOPS, 13
EE_VIF1_TOPS_OFF, 14

SPS2 Version 0.2.0

Copyright © 2002 Terratron Technologies Inc. 40

Emotion Engine, 3, 7, 13, 14, 16, 21, 22, 29, 32,
33

FIFO, 13, 14
Files. See SPS2 Files and Directories
GIF, 13, 14
Graphics Synthesizer, 3, 7, 10, 16, 17, 21, 22, 29,

32, 34
GS. See Graphics Synthesizer
GS_BGCOLOR, 16, 17
int_lock, 7, 9
INTC, 14, 15
IPU, 13, 14
Kernel Module, 8, 9
License, 4
MIPS 3, 16
physical address, 11, 23, 26
ps2lframework, 7, 9
pvEERegisters, 29
pvStart, 10, 23
registers. See Graphics Synthesizer, Emotion

Engine
Scratch Pad, 3, 10, 18, 21, 22, 29, 32, 36
SCRATCH_PAD, 11, 18, 21, 22, 36
SCRATCH_PAD_OFF, 18, 36
SIF, 14, 15
spr. See Scratch Pad
SPS2 Core Function Set, 6, 7, 13, 16, 18, 19, 20,

21, 29
SPS2 Extended Function Set, 6, 7, 14, 17, 18, 19,

21, 29
SPS2 Files and Directories, 7
SPS2 ioctl Command Set, 6
SPS2_EE_REGISTERS_START, 21, 22
SPS2_GS_REGISTERS_START, 21, 22
sps2_load, 8
SPS2_MAP_BLOCK_128K, 23, 25
SPS2_MAP_BLOCK_16K, 23, 25
SPS2_MAP_BLOCK_32K, 23, 25
SPS2_MAP_BLOCK_4K, 10, 23, 25
SPS2_MAP_BLOCK_64K, 23, 25

SPS2_MAP_BLOCK_8K, 23, 25
SPS2_MAP_CACHED, 10, 23, 25
SPS2_MAP_UNCACHED, 23, 25
sps2_mod, 8
SPS2_SCRATCH_PAD_START, 21, 22
sps2_unload, 8
SPS2_VU_MEMORY_START, 21, 22
sps2Allocate, 10, 12, 21, 23, 24, 25, 26, 27, 28
sps2FlushCache, 11, 12, 23, 25, 27
sps2Free, 12, 21, 22, 23, 24, 25, 32
sps2GetPhysicalAddress, 11, 23, 25, 26
sps2Init, 10, 12, 13, 16, 18, 19, 21, 22, 23, 24,

25, 27, 28, 29, 31, 33, 34, 35, 36
sps2interface.h, 7
sps2lib.h, 7, 10, 12, 13, 14, 16, 17, 18, 19
sps2Memory_t, 10, 22, 23, 24, 25, 26, 32
sps2registers.h, 7, 12, 13, 16, 21, 33, 34
sps2Release, 11, 12, 13, 16, 18, 19, 21, 22, 29
sps2Remap, 24, 25, 26
sps2scratchpad.h, 7, 18, 36
sps2vumemory.h, 7, 19, 35
sps2WaitForDMA, 11, 12, 28
STR, 11, 12, 28
Timer, 13, 14
uncached, 3, 23, 25
Vertex Unit, 3, 7, 19, 21, 22, 29, 32, 35
VIF0, 13, 14
VIF1, 13, 14
virtual address, 23, 26
vspeed, 3, 7, 9
VU. See Vertex Unit
VU0_MEM, 19, 35
VU0_MEM_OFF, 19, 35
VU0_MICRO_MEM, 19, 21, 35
VU0_MICRO_MEM_OFF, 19, 35
VU1_MEM, 19, 35
VU1_MEM_OFF, 19, 35
VU1_MICRO_MEM, 19, 35
VU1_MICRO_MEM_OFF, 19, 35

