32bit Colour Channel Shifting using 8bit and 16bit texture formats

Author: Mark Breugelmans (Sony Computer Entertainment Europe)
Date: 26 October 2001 — October 2004

Overview
This document has been written to give a simplified understanding of GS memory and the mappings between 32,
16 and 8bit pixel formats for use in colour channel copying operations.

Introduction
There are occasions where you may wish to perform channel copying operations for example Green->Alpha, etc.
GS memory is laid out in a non-linear fashion internally to achieve optimal speed during rasterization.

16bit channel operations:
Up to 2 channels are copied at a time: {red and green} or {blue and alpha}

As you can see in this diagram for 16bit textures the 32bit colour channels become split up into Red/Green and
Blue/Alpha in groups of 8x2pixels.
Note: In these diagrams for alpha | used the colour white.

Mapping within 1-column from 16bit to 32bit format:

1-column PSMCT16 Data
- 16 pixels -
8 |9 [10] 11|12 [13]1a] s e rol 2 sl rale

1-column PSMCT32 Data
-8 pixels -

Moving Red/Green into Blue/Alpha just requires you to copy 8 pixels to the right.
Similarly moving Blue/Alpha into Red/Green requires you to copy 8 pixels to the left.

You can ignore the block arrangement within each page, as you are both reading and writing in 16bit mode.

Simply set Texture mode to PSMT16 and Frame mode to PSMT16 and copy using no texture filtering (point
sampling). You will need to copy double the height of the 32bit frame buffer.

Using vertical strips of 8pixels wide will give you optimal performance for this. If you don't want to copy one of the
channels you can use the FBMASK to inhibit writes.

Note: This type of operation will not work in-place if you are trying to add colour values to one another.

Example code for 16bit Red, Green copy into Blue, Alpha of a temporary
texture for the whole frame buffer

SetGSReg(SCE_GS_XYOFFSET_1, SCE_GS_SET_XYOFFSET(0,0));
SetGSReg(SCE_GS_FRAME_1,SCE_GS_SET_FRAME (tempTextureFBP,

(frameBufferwidth>>6), SCE_GS_PSMCT16, 0));
SetGSReg(SCE_GS_ZBUF_1, SCE_GS_SET_ZBUF(0, SCE_GS_PsSmMz16s, 0));
SetGSReg(SCE_GS_DTHE, 0); // Disable Dithering
SetGSReg(SCE_GS_TEST_1, SCE_GS_SET_TEST(1,0,0,1, 0,0,1,1)); // Disable Z-tests/writes
SetGSReg(SCE_GS_ALPHA_1,SCE_GS_SET_ALPHA(2, 2, 2, 0, 128)); // Disable alpha blend
SetGSReg(SCE_GS_TEXFLUSH, 0); // Flush texture cache
SetGSReg(SCE_GS_TEXO0_1, SCE_GS_SET_TEXO((frameFBP<<5), // Texture = FRAME

(frameBufferwidth>>6), SCE_GS_PSMCT16,
10, 10, 1, 1, 0, 0, O,

0, 0));
SetGSReg(SCE_GS_FBA_1l, SCE_GS_SET_ FBA(O)),
SetGSReg(SCE_GS_TEXA, SCE_GS_SET_TEXA(O, 0, 0x80));

SetGSReg(SCE_GS_TEX1_1, SCE_GS_SET TEX1(1 0, 0, 0, 0, 0,0));// Point sampling

// Draw copy sprite to 0,0 in dest
SetGSReg(SCE_GS_PRIM, SCE_GS_SET_PRIM(SCE_GS_PRIM_SPRITE, O, 1, 0, 1, 0, 1, 0, 0));
SetGSReg(SCE_GS_RGBAQ, SCE_GS_SET_RGBAQ(0x80, 0x80, 0x80, 0x80, 3f800000));

for (ivertStrip=0; iVertStrip<(frameBufferwidth>>4); ivertStrip++) // 8 pixel wide strips
{

// In GS co-ordinates use (+8,+8) for centre of pixel

SetGSReg(SCE_GS_UV, SCE_GS_SET_UV (8+(ivertStrip<<8), 8));

SetGSReg(SCE_GS_XYZ2, SCE_GS_SET_XYZ((8<<4)+(ivertStrip<<8), 0, 0));

SetGSReg(SCE_GS_UV, SCE_GS_SET_UV (8+(iVertStrip<<8)+(8<<4), 8+(height<<l)));
SetGSReg(SCE_GS_XYZ2, SCE_GS_SET_XYZ((8<<4)+(ivVertStrip<<8)+(8<<4), (height<<l), 0));

8bit channel operations
(For single channel moving eg: Blue->Alpha)

For 8bit textures the 32bit colour channels are nicely divided into quarters, which again map to groups of
8x2pixels. However the individual pixel mappings for each colour are arranged in 4x2 areas in which the
mappings alternate between odd and even 'columns' (each column is actually a row). The mappings are as
below:

Even Column Mapping:

1-column PSMT8 Data (Even column)
- 16 pixels -

HENSNGIN 0 | 1| 2] 3|4 | 5| 6| T]0o[1|2]| 3

12113 14(15] 8 | 9 | 10| 11|12 |13 (14| 15]8 [9 |10 11

1-column PSMCT32 Data
- B pixels -

Odd Column Mapping:

1-column PSMT8 Data (Odd column)
e 16 pixels o

193 ol4]| 2|3
9 [10] 11 89|10 11
ol1|2|3|4|5[6| 7|lo|1|2|3|4|5]|86]|7

8 (9 |10[11112|13(14| 15| 8(9 | 10| 11({12|13(14| 15

1-column PSMCT32 Data
- 8pixels -

The block arrangement in each page for PSMT8 and PSMCT32 is identical so you can ignore that. However you
need to follow the odd and even column order within each block as below when choosing which mapping to use.

Column arrangement within
each block for PSMT8

A

Column

Column
16 pixels

Column

Column
~#— 16 pixels —=

v

You can copy these pixels using PSMT8 as your texture source with a 32bit grey scale CLUT. Pixels are written
back in PSMCT32 mode. Use FBMASK to mask channels you don't want to write to. This operation can be done
in-place.

Using the texture region-repeat it is possible to obtain reasonable performance for 8bit channel copy operations.
See example below:

Example code for Blue to Alpha in-place copy for 1 page.

Copyright Mark Breugelmans, Sony Computer Entertainment Europe 2001-2004

